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• Winter 1978-1979 featured distinct large-scale 
weather regimes 

• Transitions between these 1978-1979 weather 
regimes were very abrupt 

• The Presidents’ Day storm marked a transition from 
cold and dry to warm and wet 

• Gridded datasets available at that time were 
insufficient to study large-scale regime changes  

• The 2009-2010 and 2010-2011 featured prominent 
large-scale regime transitions. 

 

Motivation 



1. Large-scale regime transitions before and after the Presidents’ 
Day Storm of February 1979 

2. Large-scale blocking, extreme weather, and the “Coast-to-
Coast” and “Screaming Eastern Pacific Jet” storms 

3. “Flavors” of cyclone-jet interactions in late winter 2010 

4. The “half and half” winter of 2010-2011: Cold early and mild late 

5. CONUS weather variability during the winter 2010-2011 
transition from cold early to mild late 

6. A comparison of the CONUS bomb of 25-26 Oct 2010 and the 
“Cleveland Superbomb” of 25-26 January 1978 (time permitting) 

 

Outline of presentation 



North American 500-hPa height and 850-hPa 
Temperature Patterns: 1 Jan to 15 Mar 1979 



500-hPa Z(dam)/Z’(m): 1-31 Jan 1979 



850-hPa T(C)/T’(C): 1-31 Jan 1979  



500-hPa Z(dam)/Z’(m): 1- 21 Feb 1979 



850-hPa T(C)/T’(C): 1-21 Feb 1979 



500-hPa Z(dam)/Z’(m): 21 Feb-15 Mar 1979 



850 T(C)/T’(C): 21 Feb – 15 Mar 1979 



• Given that these winters were: 
– Dominated by disruption of the NH polar vortex, 

which enables arctic air masses to reach lower 
latitudes, 

– Characterized by extreme weather events along 
the margins of the arctic air masses, 

– Associated with El Niño (2009–2010) and La Niña 
(2010–2011), 

• We ask:  What are the ingredients behind this 
observed extreme weather variability? 

Winters 2009–2010 and 2010–2011 
 



Winter 2009–2010 
 



Winter 2009–2010: “Blocked” Flow Pattern 

Index 
(SD) 

300-hPa Geo. Height (contoured, dam)  
and Geo. Height Anomaly (shaded, dam) 

850-hPa Temperature (contoured, °C)  
and Temperature Anomaly (shaded, °C) 

CPC AO Index: 1 Dec 2009 – 15 Feb 2010 

°C dam 

1 Dec 09 16 Dec 09 1 Jan 10 16 Jan 10 1 Feb 10 
-4 

+4 
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-4 

+4 

0 

1 Dec 2009  
to  

 15 Feb 2010 

Data: 1.0° NCEP−GFS Analyses Data: 1.0° NCEP−GFS Analyses 

Source: Climate Prediction Center 



Part III:  Two Major North Atlantic Blocking Events 
 

 Episode I:  9 Dec 2009 – 18 Dec 2009 
 Episode II:  31 Dec 2009 – 8 Jan 2010 
 • Western Atlantic cyclones build/reinforce block 

• Omega/Rex block transition 
• European cold and storminess 
• Southeast U.S. cold 



3. North Atlantic Blocking Episodes I and II 

I) 9 Dec 2009 to 18 Dec 2009 

dam 

300-hPa Geopotential Height (dam, solid) and geopotential height anomaly (dam, shaded): 

L1: 6 to 9 Dec (944 hPa) 
L2: 8 to 11 Dec (976 hPa) 
L3: 9 to 13 Dec (960 hPa) 
L4: 14 to 18 Dec (988 hPa) 
 
L3 represents coastal 
redevelopment of 
“Coast-to-Coast” Storm 

Data: 2.5° NCEP−NCAR Reanalyses 



3. North Atlantic Blocking Episodes I and II 

dam 

300-hPa Geopotential Height (dam, solid) and geopotential height anomaly (dam, shaded): 

L1: 29 to 31 Dec (980 hPa)  
L2: 31 Dec to 1 Jan (992 hPa) 
L3: 1 to 6 Jan (972 hPa) 
L4: 7 to 10 Jan (972 hPa) 
 
L5: 29 Dec to 1 Jan (984 hPa) 
L6: 1 to 3 Jan (1016 hPa) 
L7: 5 to 7 Jan (1004 hPa) 

II) 31 Dec 2009 to 8 Jan 2010 

Data: 2.5° NCEP−NCAR Reanalyses 



Winter 2009−2010:  North Atlantic Blocking – Episodes I and II 
• Impact: Upstream warmth and ultimate influence on polar ice cover 
• Impact: Downstream snow storms and unprecedented snow cover 

7 Jan 2010  Visible Image 

Source: MODIS Rapid Fire Online Server 

London 

Dublin 

Glasgow 

Source: National Snow and Ice Data Center 

16 Feb 2010 Sea Ice Extent 



Winter 2009−2010:  Extreme Weather Events 

Day Month Year Event 

D
ec

 
20

09
 8−10 Dec 2009  “Coast-to-Coast” Storm (influenced by Typhoon Nida) 

20 Dec 2009 Mid-Atlantic (I) and Southeast New England Snowstorm 

 J
an

 2
01

0 

14 Jan 2010 Two-week cold air outbreak sets records in Florida 

22 Jan 2010 Record-breaking West Coast Wind/Rain Storm 

24−25  Jan 2010 Midwest Snowstorm 

29−30 Jan 2010 Southern Plains Ice Storm 

Fe
b 

20
10

 6 Feb 2010 Mid-Atlantic Snowstorm (II) 

10−11 Feb 2010 Mid-Atlantic Snowstorm (III) 

15 Feb 2010 Second cold air outbreak sets records in Florida 



• TY Nida as a moisture source for mid-Pacific cyclones 
• Mid-Pacific cyclones build Alaskan ridge/block 
• Downstream development/coast-to-coast storm 

1800 UTC 27 November 

Typhoon Nida 

Pacific precursors and “Coast-to-Coast” Storm 

0600 UTC 8 December 
SD 

27 November to 9 December 2009 

Satellite imagery courtesy Digital Typhoon GFS SLP and Anomaly courtesy Rich Grumm 



Pacific Precursors and the “Coast-to-Coast Storm” 

Water Vapor: 2330 UTC 3 Dec SLP vs. Time (22 Nov – 3 Dec) 

Nida 



20 25 30 35 40 45 50 55 mm 

b) 0000 UTC 5 December 

a) 0000 UTC 2 December c) 0000 UTC 6 December 

40 50 60 70 80 90 100 m s−1 

700-hPa Geo. Height (dam; solid black),  
Temperature (°C; dashed red),  

Wind (kt; barbs), and  
Precipitable Water (mm; shaded) 

1000−500-hPa Thickness (dam; dashed),  
SLP (hPa; solid black), and  

300-hPa Wind Speed (m s−1; shaded) 

Pacific precursors and “Coast-to-Coast” Storm 

Data: 1.0° NCEP−GFS Analyses Data: 1.0° NCEP−GFS Analyses 



Pacific Precursors and the “Coast-to-Coast Storm” 

1000−500-hPa Thickness (dam; dashed), SLP (hPa; solid black),  
and 300-hPa Wind Speed (m s−1; shaded) 

40 50 60 70 80 90 100 m s−1 

1200 UTC 8 December 0000 UTC 9 December 

L L 
H H 

H H 



Pacific Precursors and the “Coast-to-Coast Storm” 
0000 UTC 10 December 

1000−500-hPa Thickness (dam; dashed), SLP (hPa; solid black),  
and 300-hPa Wind Speed (m s−1; shaded) 

40 50 60 70 80 90 100 m s−1 

L 

H 

L 



“Coast-to-Coast” Storm 

06Z 8 Dec 00Z 9 Dec 

700-hPa QG Forcing (RHS of Q-vector Eqn; shaded, 10−11 Pa m−2 s−1) and SLP (black, 
every 4 hPa) at 0600 UTC 8 Dec 2009; L’s denote 6-hourly surface low positions for  

1800 UTC 7 Dec – 0000 UTC 11 Dec 2009 

00Z 11 Dec 

× 10−11 Pa m−2 s−1 
Data: 1.0° NCEP−GFS Analyses 

0600 UTC 8 December 2009: 

00Z 10 Dec 

Coastal 
Redevelopment 

of “Coast-to- 
Coast” Storm 



Part IV:  Screaming Eastern Pacific Jet and the 
Downstream Impact 

 
 16 Jan 2010 – 25 Jan 2010 

• STJ strengthens/expands eastward across Pacific 
• AO phase is briefly positive 
• Downstream flow amplifies; major western U.S. storm 
• Brief El Nino signature over western U.S. 
• Significant full-latitude trough over eastern U.S. 



300-hPa Geo. Height (dam; solid), Temperature (°C; dashed), Wind (kt; barbs),  
and Wind Speed (m s−1; shaded) 

40 50 60 70 80 90 100 m s−1 

0000 UTC 16 January 0000 UTC 19 January 

Screaming Eastern Pacific Jet and Downstream Impact 



4. Screaming East Pacific Jet and Downstream Impact 
400–100-hPa Rel. Humidity (%; gray shading, south of 20°N); 200-hPa Wind Speed 

(green every 10 m s−1, starting at 60 m s−1), Irrot. Wind (vectors, above 5 m s−1 

only), Geo. Height (black every 12 dam) and Anomaly (std dev, color shading) 

% STD DEV 

15–20 January 2010 10 m s−1 
Data: 1.0° NCEP−GFS Analyses 



1000−500-hPa Thickness (dam; dashed), SLP (hPa; solid black),  
and 300-hPa Wind Speed (m s−1; shaded) 

40 50 60 70 80 90 100 m s−1 

0000 UTC 22 January 1200 UTC 25 January 

Screaming Eastern Pacific Jet and Downstream Impact 

L 

L 



22 Jan GFS SLP and Anomaly 

21 Jan SPC Storm Reports 

4. Screaming East Pacific Jet and Downstream Impact 

All-Time Minimum SLP Records  
21−22 Jan 2010 

978-hPa: Medford, OR 983-hPa: Las Vegas, NV 

979-hPa: Eureka, CA 984-hPa: L.A., CA 

979-hPa: Reno, NV 987-hPa: San Diego, CA 

980-hPa: SLC, UT 989-hPa: Phoenix, AZ 

All-Time Wind Records  
21−22 January 2010 

88 knots: Kingman, AZ 

82 knots: Ajo, AZ 

81 knots: Newport Beach, CA 

80 knots: Huntington Beach, CA 

Image courtesy Rich Grumm 



• Anomalous high-impact extreme weather events occurred on 
intraseasonal time scales during an unusual NH flow pattern 
characterized by negative AO and El Niño conditions 
 

• TC Nida acted as a catalyst for tropical moisture surges that 
contributed to Alaskan blocking, downstream development, and 
the “Coast-to-Coast” Storm 
 

• “Coast-to-coast” Storm contributed to first North Atlantic 
blocking episode; continued western Atlantic storminess helped 
initiate second blocking episode 
 

• Screaming jet, downstream development, a second western 
U.S. storm, and short-lived positive AO marked onset of a brief 
El Niño signature over western U.S. 
 

Conclusions 

Contact: bosart@atmos.albany.edu, heathera@atmos.albany.edu, cordeira@atmos.albany.edu 



Winter 2010–2011 
 



Winter 2010–2011: Blocked Flow Pattern 

Index 
(SD) 

300-hPa Geo. Height (contoured, dam)  
and Geo. Height Anomaly (shaded, dam) 

850-hPa Temperature (contoured, °C)  
and Temperature Anomaly (shaded, °C) 

CPC AO Index: 1 Dec 2010 – 15 Feb 2010 

°C dam 

1 Dec 10 16 Dec 10 1 Jan 11 16 Jan 11 1 Feb 11 
-4 

+4 

0 

-4 

+4 

0 

15 Dec 2010 
to  

 15 Jan 2011 

Data: 1.0° NCEP−GFS Analyses Data: 1.0° NCEP−GFS Analyses 

Source: Climate Prediction Center 



Winter 2010–2011: Transitioning Flow Pattern 

Index 
(SD) 

300-hPa Geo. Height (contoured, dam)  
and Geo. Height Anomaly (shaded, dam) 

850-hPa Temperature (contoured, °C)  
and Temperature Anomaly (shaded, °C) 

CPC AO Index: 1 Dec 2010 – 15 Feb 2010 

°C dam 

1 Dec 10 16 Dec 10 1 Jan 11 16 Jan 11 1 Feb 11 
-4 

+4 

0 

-4 

+4 

0 

15 Jan 2011 
to  

 15 Feb 2011 

Data: 1.0° NCEP−GFS Analyses Data: 1.0° NCEP−GFS Analyses 

Source: Climate Prediction Center 



1 Dec 10 16 Dec 10 1 Jan 11 16 Jan 11 1 Feb 11 

Winter 2010–2011: Transitioning Flow Pattern 

Index 
(SD) 

300-hPa Geo. Height (contoured, dam)  
and Geo. Height Anomaly (shaded, dam) 

850-hPa Temperature (contoured, °C)  
and Temperature Anomaly (shaded, °C) 

CPC PNA Index: 1 Dec 2010 – 15 Feb 2010 

°C dam 

15 Jan 2011 
to  

 15 Feb 2011 

Data: 1.0° NCEP−GFS Analyses Data: 1.0° NCEP−GFS Analyses 

Source: Climate Prediction Center 

Index 
(SD) 

-2 

+2 

0 

-2 

+2 

0 
Source: Climate Prediction Center 



Weather Variability within 
These Large-Scale Flow Patterns 

 



Winter 2010−2011:  Blocked Flow Pattern 

  -48   -32    -16     16    32     48     64    80   
dam 

300-hPa HGHT (solid, dam) and  
HGHT ANOM (departure from long-term 

climatology, shaded, dam) 
 

1200 UTC 15 Dec 2010 

850-hPa HGHT (solid, dam) and  
HGHT ANOM (departure from long-term 

climatology, shaded, dam) 
 

dam 
  -24    -16    -8      8     16      2      32    40   



Winter 2010−2011:  Blocked Flow Pattern 

  -16   -12    -8     -4     4      8     12     16    20   
mm 

m s−1 
°C 

20    25     30    35   40     45   

50      60      70      80      90     100   

1000–500-hPa THICK (dashed, dam), 
PRECIP WATER (mm, gray shading), SLP 

(solid contours, hPa), and 250-hPa 
WND SPEED (m s−1, color shading) 

 

850-hPa TEMP (solid, °C) and  
TEMP ANOM (departure from long-term 

climatology, shaded, °C) 
 

1200 UTC 15 Dec 2010 



2010−2011 Regimes: Blocked Flow Pattern 

Dublin 

Glasgow 

London 

24 Dec 2010  Visible Image 

Source: MODIS Rapid Fire Online Server Source: National Snow and Ice Data Center 

2 Jan 2011 Sea Ice Extent 

• Mild, onshore flow over eastern Canada limits extent of sea ice 
• Anomalous cold air over northern Europe promotes extensive U.K. snow cover  

 



Hudson Bay Ice Extent:  26 Nov–28 Jan (2006/07–2010/11) 

2010/2011 



Weather Highlights:  December 2010 through February 2011 

Day Month Year Event 

D
ec

 2
01

0 10−12 Dec 2010  Heavy rain in Pacific Northwest 

18−22 Dec 2010 Heavy rain/snow in southern California 

26−27 Dec 2010 Coastal Northeast snowstorm 

9−10 Jan 2011 Southeast snow and ice storm 

 J
an

 2
01

1 18−19 Jan 2011 NY/NJ and southern New England snowstorm 

20−21 Jan 2011 Northeast snowstorm 

26−27 Jan 2011 Northeast snowstorm 

Fe
b 

20
11

 1−3 Feb 2011 Southern plains to lower Great Lakes snowstorm 

8−10 Feb 2011 OK/AR snowstorm 

10 Feb 2011 OK breaks all-time minimum temperature (−30.5°F) 



Late Jan–Early Feb 2011:  AO−/AO+ and PNA+/PNA− transition 



1–3 February 2011 Snowstorm:  0000 UTC 1 Feb 

m s−1 mm 

1000–500-hPa THICK (dashed, dam), PRECIP WATER (mm, gray shading),  
SLP (solid contours, hPa), and 250-hPa WND SPEED (m s−1, color shading) 

 



1–3 February 2011 Snowstorm:  1200 UTC 1 Feb 
 

m s−1 mm 

1000–500-hPa THICK (dashed, dam), PRECIP WATER (mm, gray shading),  
SLP (solid contours, hPa), and 250-hPa WND SPEED (m s−1, color shading) 

 



1–3 February 2011 Snowstorm:  0000 UTC 2 Feb 
 
 

m s−1 mm 

1000–500-hPa THICK (dashed, dam), PRECIP WATER (mm, gray shading),  
SLP (solid contours, hPa), and 250-hPa WND SPEED (m s−1, color shading) 

 



1–3 February 2011 Snowstorm:  1200 UTC 2 Feb 

m s−1 mm 

1000–500-hPa THICK (dashed, dam), PRECIP WATER (mm, gray shading),  
SLP (solid contours, hPa), and 250-hPa WND SPEED (m s−1, color shading) 

 



1–3 February 2011 Snowstorm:  0000 UTC 3 Feb 

m s−1 mm 

1000–500-hPa THICK (dashed, dam), PRECIP WATER (mm, gray shading),  
SLP (solid contours, hPa), and 250-hPa WND SPEED (m s−1, color shading) 

 



1–3 February 2011 Snowstorm:  0000 UTC 1 Feb 
 250-hPa WND (m s−1, color shading), POT VORT (PVU, solid gray), REL HUM (%, gray 

shading); 300–200-hPa IRROT WND (vectors, m s−1) and 600–400-hPa OMEG  
(red, every 5 x 10−3 hPa s−1, neg. values only) 

 

m s−1 % % % 



1–3 February 2011 Snowstorm:  1200 UTC 1 Feb 
 

m s−1 % % % 

250-hPa WND (m s−1, color shading), POT VORT (PVU, solid gray), REL HUM (%, gray 
shading); 300–200-hPa IRROT WND (vectors, m s−1) and 600–400-hPa OMEG  

(red, every 5 x 10−3 hPa s−1, neg. values only) 
 



1–3 February 2011 Snowstorm:  0000 UTC 2 Feb 
 

m s−1 % % % 

250-hPa WND (m s−1, color shading), POT VORT (PVU, solid gray), REL HUM (%, gray 
shading); 300–200-hPa IRROT WND (vectors, m s−1) and 600–400-hPa OMEG  

(red, every 5 x 10−3 hPa s−1, neg. values only) 
 



1–3 February 2011 Snowstorm 



1–3 February 2011 Snowstorm 

Images taken from Weekly Weather and Crop Bulletin 

GOES East IR Satellite 
Image: 3:01 pm EST on 

1 Feb 2011 

Daily Snow, Precipitation, and Temperature 
Records for 30 Jan–5 Feb 2011 



NOAA National Operational Hydrologic Remote Sensing Center 

Extensive Snow Cover:  January–February 2011 

Snow Depth:  27 January 2011 



Extensive Snow Cover:  January–February 2011 

Snow Depth:  3 February 2011 

NOAA National Operational Hydrologic Remote Sensing Center 



Extensive Snow Cover:  January–February 2011 

Snow Depth:  10 February 2011 

NOAA National Operational Hydrologic Remote Sensing Center 



 
 

Summary 

Contact: bosart@atmos.albany.edu, heathera@atmos.albany.edu, cordeira@atmos.albany.edu 

Extreme winter weather can be related to: 
– Amplified flow pattern allowing mild Atlantic air to 

reach eastern Canada and cold air to reach 
western Europe and the southern U.S. 

– Cold high pressure systems that deliver cold air to 
the southern U.S. 

– Extensive snow cover at lower latitudes east of 
the Rockies that reinforces frontal boundaries 

– Frequent storminess along these reinforced 
frontal boundaries 
 
 



The CONUS Continental “Bomb” of 25-26 
October 2010 



Cyclone statistics:  High-impact weather 

• SLP of 955.2 hPa at Bigfork, MN (ASOS) at 2213 UTC 26 Oct 
 

– Set MN state record for lowest observed SLP 
– Record lowest observed SLP between Rockies and Appalachians, 

breaking record set by Jan 1978 Cleveland Superbomb 

• Strong SLP gradient resulted 
in 55–65 kt wind gusts  
 

• Long-lived squall line was 
associated with 400+ severe 
reports on 26 Oct 
 

SPC Storm Reports:  26 Oct 2010 



Cyclone statistics:  High-impact weather 

Weekly Weather and Crop Bulletin 



Antecedent conditions:  0000 UTC 24 Oct IR 

GOES-11 satellite 

STJ axis 

TD-17W 
remnants 



Antecedent conditions:  96-h trajectories ending 0000 UTC 24 Oct 

TC Megi  
at 0000 UTC 20 Oct 

TD-17W  at  
0000 UTC 

22 Oct 

TD-17W at 
0000 UTC  

22 Oct TC Megi  
at 0000 UTC 20 Oct 

TD-17W 
remnant low 

at 0000 UTC 24 Oct 
0000 UTC 23 Oct 

0000 UTC 22 Oct 



Cyclone evolution:  0000 UTC 25 Oct  

250-hPa wind speed (color shading, m s−1), precipitable water (gray shading, mm), 
SLP (black, hPa) and 1000–500-hPa thickness (dashed, dam) 



Cyclone evolution:  0000 UTC 26 Oct  

250-hPa wind speed (color shading, m s−1), precipitable water (gray shading, mm), 
SLP (black, hPa) and 1000–500-hPa thickness (dashed, dam) 

TD-17W 
0000 UTC 

22 Oct 

TC Megi: 0000 UTC 
                19 Oct 



250-hPa wind speed (color shading, m s−1), precipitable water (gray shading, mm), 
SLP (black, hPa) and 1000–500-hPa thickness (dashed, dam) 

Cyclone evolution:  0000 UTC 27 Oct  

TD-17W 
0000 UTC 

22 Oct 

TC Megi 
1200 UTC 

19 Oct 



250-hPa WND (m s−1, color shading), PV (PVU, gray), REL HUM (%, gray shading); 300–200-hPa 
IRROT WND (vectors, m s−1), 600–400-hPa OMEG (red, every 5 x 10−3 hPa s−1, neg. values only) 

Cyclone evolution:  Irrotational wind, jet – 0000 UTC 27 Oct  



A Comparison of the  CONUS bomb of 25-26 
October 2010 with the “Cleveland 

Superbomb” of 25-26 January 1978 



Comparison with 1978 Superbomb:  850 hPa 
0000 UTC 26 October 2010 0000 UTC 26 January 1978 

850-hPa temp. (K, dashed), std. temp. anomaly (SD, shaded), and geo. height (dam, solid) 

1200 UTC 26 October 2010 1200 UTC 26 January 1978 

SD 
2.5° NCEP–NCAR  reanalysis  



Comparison with 1978 Superbomb:  250-hPa 
0000 UTC 26 October 2010 0000 UTC 26 January 1978 

250-hPa temp. (K, dashed), geo. height (dam, solid), and wind speed (m s−1, shaded) 

1200 UTC 26 October 2010 1200 UTC 26 January 1978 

m s−1 
2.5° NCEP–NCAR  reanalysis  



Comparison with 1978 Superbomb:  Static stability 
0000 UTC 26 October 2010 0000 UTC 26 January 1978 

850−500-hPa static stability parameter (10−4 K Pa−1) and sea level pressure (hPa) 

1200 UTC 26 October 2010 1200 UTC 26 January 1978 

10−4 K Pa−1 
2.5° NCEP–NCAR  reanalysis  



Conclusions 

• Strong Pacific STJ originated from juxtaposition of TC/TD-related 
warm pools and trough-related cold pools 

• Pacific frontal zone was a focus for deep ascent, increased 
baroclinicity, and a strengthened STJ 

• TC/TD related diabatic outflow strengthened the PV gradient 
and STJ from Asia eastward across the Pacific 

• STJ entrance & exit region dynamics governed the structure & 
evolution of the surface cyclone from the Pacific to the Midwest 

• Oct 2010 intense Midwest cyclone featured a strong STJ, modest 
low-level baroclinicity, and relatively low stability  

• Jan 1978 intense Ohio Valley cyclone featured coupled jets, 
strong baroclinicity, and relatively high stability 
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